您现在的位置是:首页化工论文

工程师职称论文优秀化工论文范文

发布时间:2015-08-21 15:44:14更新时间:2015-08-21 16:14:30 1

  化工工程师在评职称的时候都需要发表一些职称论文,化工职称论文研究的方向有很多,本文就是一篇化工论文范文,主要论述了响应面法优化电解芬顿协同法深度处理老龄垃圾渗滤液。
  摘要:采用电解芬顿法深度处理老龄垃圾渗滤液,选取电量、进水pH值、进水氨氮浓度3个因素为变量,CODCr去除率为响应值进行BoxBehnken中心组合设计。利用响应面法对试验结果进行分析,建立了CODCr去除率为响应值的二阶多项式模型并进行了方差分析和显著性检验,通过解模型逆矩阵得到最佳条件:单位面积电量为23.26 Ah/dm2、pH值为3.58、进水氨氮浓度56.78 mg/L。在最佳条件下,CODCr去除率为96.5%,与模型预测值偏差为4.45%,吻合度较高。对电解芬顿深度处理前后的渗滤液进行GCMS分析,表明电解芬顿协同处理技术能有效降解垃圾渗滤液中难生化降解的有机物,将有机物种类从42种降低至21种,是较有效的深度处理技术。

  关键词:响应面法,电解芬顿,垃圾渗滤液,有机物

  Abstract:

  The electrofenton process was employed in the advanced treatment of Mature landfill leachate.Power,initial pH,and initial ammonianitrogen concentration were selected as the variables and CODCr removal efficiency were used as the response in the central composite design (CCD) .Response surface methodology (RSM) was used for the analysis of the experimental results. A secondorder polynomial regression equation was developed to describe the CODCr removal efficiency and was validated by variance and significance test.The optimum reaction conditions were determined by calculate inverse matrices of regression equation.The results showed that under the optimum reaction conditions (power dosage of 23.26 Ah/dm2,initial pH value of 3.58 and initial ammonianitrogen dosage of 56.78 mg/L) ,the CODCr removal efficiency was 96.5%,which was highly consistent with value predicted by the model equation,with a deviation of 4.45%.GCMS method was used in analysing landfill leachate treated by electrofenton,comparing with landfill leachate treated by conventional treatment process, it is indicated that the electrolytic Fenton technology can effectively degrade the refractory organics in landfill leachate. The result showed that electrolytic Fenton technology was effective advanced treatment.

  Key words:response surface methodology;electroFenton;landfill leachate; organics

  城市垃圾渗滤液水质复杂,污染性极强[1],所含有机物浓度高、种类多,组分大多是难生物降解的有机化合物[2],并含有病原微生物、重金属,浸入地下会造成严重的污染[3]。随着垃圾填埋时间的不断延长,垃圾渗滤液逐渐趋于老龄化,水质特征也发生变化,其中CODCr、BOD5、及BOD5/CODcr降低,NH3―N浓度升高,微生物营养元素的比例严重失调,难降解有机物浓度增高[46]。老龄垃圾渗滤液采用常规的生化处理方法难以达标,其难点在于难降解有机物。近年来,随着处理难度进一步加大,为达到理想效果,已开展大量的电解氧化法和Fenton法相结合的协同处理技术研究,并将其应用于老龄垃圾渗滤液的处理中[711]。许多学者对影响处理效果的电流强度、极板材料、pH值、极板间距等单因素进行了探讨,并研究了不同情况下有机物的降解效率。利用电解芬顿法协同处理常规生化处理过后未达标的老龄垃圾渗滤液,可以取得较好的出水效果,有效去除难降解有机物。

  响应面法[12]通过对具有代表性的局部各点进行试验,回归拟合全局范围内因素与结果间的函数关系,取得各因素最优水平值,是综合试验设计和数学建模中常用的一种优化方法。采用响应面法的试验次数少、精密度高、预测性能好,目前已广泛应用于众多领域,其试验周期短、求得的回归方程精度高,并能研究几种因素间交互作用[13],较“正交试验设计法”具有明显优势。笔者将响应面法引入电解芬顿协同技术深度处理老龄垃圾渗滤液的过程中,对工艺参数进行优化,建立以CODCr去除率为响应值的二次多项式模型,通过求解模型逆矩阵得到试验最佳条件。同时,对深度处理前后渗滤液中各污染物含量进行GCMS分析,并将处理过程中不同种类的有机物降解率进行对比,为老龄垃圾渗滤液深度处理技术的研究提供依据。   1反应机理

  电解芬顿法是将电解法和芬顿法耦合于一体的高级氧化技术,其基本原理是利用电化学法产生的H2O2与Fe2+作为芬顿试剂的持续来源进行有机物的降解。

  在阴极,O2被还原为H2O2,然后与Fe2+发生芬顿反应产生大量活性羟基自由基(OH・),OH・进而将有机物RH的碳链裂变,最终氧化成CO2和H2O或小分子有机物。

  2试验装置与方法

  2.1试验装置

  试验采用的装置示意图见图1。电解电源采用规格0~70 V、0~150 A的直流稳压稳流开关电源;电解槽采用1 L圆形烧杯;电极阴极采用不锈钢网,尺寸80 mm×160 mm×1 mm;电极阳极采用网格型四元电极(RuO2IRO2SnO2TiO2/Ti),尺寸80 mm×160 mm×1 mm;磁力搅拌器采用HJ3A恒温型。

  2.2试验水样

  试验用渗滤液水样来自重庆长生桥垃圾填埋场,具备典型的老龄垃圾渗滤液水质特点,氨氮浓度范围为1 200~2 400 mg/L,CODCr浓度范围为2 100~3 300 mg/ L,平均C/N约为1.3,pH值范围为823~895,Cl-浓度范围为2 020~2 456 mg/L。

  2.3检测项目与方法

  常规水质指标及检测方法有:CODCr采用重铬酸钾硫酸银氧化法;氨氮采用纳氏试剂分光光度法;pH测定采用HACH Hq11d型pH计;Cl-采用AgNO3滴定法,具体操作方法依据《水和废水监测分析方法》(第四版)。

  有机物测定采用Agilent6890/5975气质联用仪。萃取方法:1)量取500 mL水样于分液漏斗中,二氯甲烷30 mL萃取3次;2)将第1)步萃取后的水相pH值调节到12,二氯甲烷30 mL萃取3次,萃取过程中出现乳化现象时采用离心法(4 000 r/min作用3 min)破乳;3)将第2)步萃取后的水相pH值调节到2,二氯甲烷30 mL萃取3次;4)将以上萃取后的有机相汇合,并加入少量无水硫酸钠干燥,然后使用吹脱仪浓缩至1.0 mL,保存于4 ℃ 的条件下待测。

  GCMS检测条件:采用DB35MS石英毛细管色谱柱,规格30 m×0.25 mm× 0.25 μm。升温程序采用柱温50 ℃保持3 min,以8 ℃/min速度升至280 ℃,进样口温度280 ℃,四级杆温度150 ℃,质谱离子源传输线温度为280 ℃。以氦气作为载气,线速度为36 cm/s,流速为1.0 mL/min,柱头压52.3 kPa。电子轰击源发射的电子能量70 eV,电子倍增器电压为1 659 eV,扫描质量范围40~500 amu。采用Agilent化学工作站进行数据采集与处理。3结果与分析

  3.1单因素试验及分析

  进水pH值直接影响Fe2+、Fe3+的络合平衡与H2O2的生成,导致芬顿试剂的氧化能力受到影响。在极板间距15 mm,Fe2+浓度1.0 mmol/L,单位面积电量10 Ah/dm2情况下电解垃圾渗滤液,考察渗滤液初始pH值分别为2.0、4.0、6.0、8.0、10.0条件下CODCr的去除率,结果见图2。

  投加的亚铁离子由1.0 mmol/L增加至4.0 mmol/L时,CODCr去除率在33.73%~44.87%之间,波动并不大。在反应过程中亚铁离子被不断地重复氧化、还原,总量并未消耗,反应器中投加1.0 mmol/L浓度的亚铁离子足够支持电解芬顿反应的进行。在响应面试验中投加1.0 mmol/L亚铁离子参与反应,但不作为设计因素。

  氧气电解产生H2O2的反应过程在一定的电流密度和电位梯度推动下进行,H2O2的量随着电解时间延长逐渐增多,有机物去除率也越高,有机物去除率与单位面积电量(电流密度与电解时间的乘积)呈正相关关系。在极板间距15 mm、pH值为4.0、亚铁离子浓度1.0 mmol/L,设置单位面积电量分别为125、2.5、3.75、5.0,7.5,10.0、11.25、15、20、30、40 Ah/dm2电解垃圾渗滤液,CODCr的去除率变化见图4。

  从图中可知单位面积电量越大,CODCr去除率越高,这是因为产生的OH・以及H2O2、Cl2、ClO-等氧化物随着电量增大而增多,导致极板表面电化

  ClO-等氧化物被氨氮优先利用,使得有机物可利用

  的氧化剂减少。因此,氨氮浓度越低,CODCr去除率越高。老龄垃圾渗滤液含有高浓度氨氮以及难降解有机物,采用常规生化处理难以达标。试验采用电解芬顿

  法深度处理常规生化处理后的渗滤液,结合生化处理系统出水中残余氨氮浓度范围,在响应面试验设计中设置氨氮浓度为30~400 mg/L之间。

  3.2响应面试验设计与分析

  3.2.1 响应面试验设计根据单因素试验分析可知,影响电解芬顿法去除垃圾渗滤液中有机物的主要可控因素有单位面积电量、进水pH值与氨氮浓度,分别以变量X1、X2、X3表示。综合考虑氨氮去除效果及经济因素,3个因素的取值范围定为1.0~30.0、2.0~6.0、25.4~405.63,由于进水氨氮浓度难以精确控制,不能达到与设置值完全一致,因此,试验过程中进水氨氮浓度以方案设计值为基准,稍有波动。以CODCr的去除率(%)作为响应值,记为响应变量Y。根据BoxBehnken中心组合设计原理,选取3因素3水平共27次的试验方案。设计因素的水平与编码值设置见表1,根据响应面试验方案进行试验,结果见表2,利用DesignExpert软件进行数据分析处理。

  F值越大,Pr>F值越小代表相关系数的显著性越强[15]。Pr>F值<0.05视为模型显著,而该模型的F值为318.22,Pr>F值<0.000 1,表明达到了显著水平,即该模型在被研究的整个回归区域内拟合较好。通过误差统计分析(详见表4)可知,拟合系数R2=0.994 1大于0.95,满足精度要求,表明模型相关性较好;R2Adj-R2Pred=0.991 0-0.985 3=0.005 7小于0.2,CV=3.29%小于10%,表明试验的可信度和精确度高;精密度(Adeq Precision)为5226,大于4视为合理。综上所述,该响应面模型达到了显著水平,在研究区域内能有效预测电解芬顿法深度处理老龄垃圾渗滤液过程中CODCr去除率。   图7显示了pH值取中心值时单位面积电量与进水氨氮浓度的变化对CODCr去除率的影响。根据图7等高线显示,单位面积电量超过22.81 Ah/dm2后,CODCr去除率上升趋势趋于平缓,说明过大的电量对去除率的提高作用不明显。在同样单位面积电量下, CODCr去除率随氨氮浓度的降低而增大。可见进水氨氮浓度越低、单位面积电量越高,越有利于CODCr的去除。

  图8显示了单位面积电量取中心值时进水氨氮浓度与pH值的变化对CODCr去除率的影响。根据图8等高线显示,当pH值在3.0~4.0之间时,CODCr去除率出现最大值,低的氨氮进水浓度可以获得较好的CODCr去除效果。

  从等高线图中可以看出回归方程存在稳定点且稳定点为极大值。通过解模型逆矩阵得到极大值所对应的各主要因素编码值分别为X1=0.53,X2=-0.21,X3=-0.83,即最佳条件为:单位面积电量为23.26 Ah/dm2、进水pH值为3.58、进水氨氮浓度56.78 mg/L。Y值响应值约为100.9%,该响应值表示模型可达到的理论最大值。选取上述最优条件,进行了3 组平行试验,得到CODCr去除率平均值为96.5%,与模型预测值的偏差为4.45%,由此证明该模型能够较真实地反映各因素对电解芬顿法去除老龄垃圾渗滤液中CODCr的影响,充分说明了应用响应面法优化电解芬顿协同技术深度处理老龄垃圾渗滤液是可行的。

  3.3有机物的转化规律分析

  经过水解酸化+SBBR生化处理后的老龄垃圾渗滤液,在单位面积电量为23.26 Ah/dm2,pH值为3.58,初始氨氮浓度约56.78 mg/L条件下,利用电解芬顿协同技术进行深度处理。并对老龄垃圾渗滤液原液、生化处理出水以及电解芬顿深度处理后的出水进行GCMS测试,测出的质谱特征离子图与谱库(NIST5.0)的标样质谱图(详见图9、图10、图11)进行对比分析,选取可信度在80%以上的有机物进行归类分析,见表5。

  从GCMS测试图对比可知,与老龄垃圾渗滤液原液相比,常规生化处理后的出水有机物种类从59种降低至42种,数量未明显减少,但是从出峰时间来看,25 min以后出峰的物质种类较多,含量较高,该类物质大部分是芳香烃类,难以生化降解。从表5可知常规生化处理后直链烷烃相对含量上升,是因为长链烷烃在此过程中转化成了短链烷烃。一般情况下,碳链中少于9个碳的正烷烃难以生物降解,由此得出碳链过短的烷烃也难以生物利用[16]。易被生物降解的有机物在生化处理过程中被微生物利用而降解,大部分难以生化处理的有机物无法降解而残留水中,需做进一步深度处理。

  经电解芬顿法深度处理后的出水,出峰个数明显减少,有机物种类降至21种。由GCMS图谱分析可知存在一个峰面积比例39.78%的主峰,经分析该物质为二氯环戊烷。在电解的间接氧化作用下,生成了小分子量的酮类、烃类、醛类以及不饱和烃等物质,这类物质属于难降解有机物,在出水中占较大比重。同时,电解芬顿产生了一些氯代物,经分析不属于三卤甲烷类的“三致物”。经过电解芬顿法协同深度处理后,大部分难以生化处理的有机物被降解成二氧化碳和水,从而达标排放。

  4结论

  1)利用响应面法对试验结果进行分析,建立了二阶响应面模型并进行了方差分析和显著性检验。分析表明:回归模型达到了显著性水平,在被研究的整个回归区域内拟合较好,模型可信度、精确度、精密度较高。

  2)通过对响应面法建立模型,并解逆矩阵确定反应的最优条件为:单位面积电量为23.26 Ah/dm2、pH值为3.58、进水氨氮浓度约5678 mg/L。该条件下CODCr平均去除率为965%,与模型预测值吻合度较高,偏差为4.45%。

  3)通过对老龄垃圾渗滤液原水、常规生化处理出水、电解芬顿法深度处理后的出水进行GCMS检测,结合标准图谱对比分析,电解芬顿协同处理技术能有效降解老龄垃圾渗滤液中难以生化降解的有机物,有机物种类明显减少至21种,从而达标排放。对老龄垃圾渗滤液而言,是较有效的深度处理技术。

  参考文献:

  [1]

  Chemlal R, Azzouz L, Kernani R, et al. Combination of advanced oxidation and biological processes for the landfill leachate treatment [J]. Ecological Engineering, 2014, 73: 281289.

  [2]Kirmizakis P, Tsamoutsoglou C, Kayanc B, et al. Subcritical water treatment of landfill leachate: Application of response surface methodology [J]. Journal of Environmental Management, 2014, 146: 915.

  [3]Pastor J, Hernandez A J. Heavy metals, salts and organic residues in old solid urban waste landfills and surface waters in their discharge areas: determinants for restoring their impact [J]. Journal of Environmental Management, 2012, 95:4249.
  化工论文发表期刊推荐《天津大学学报》是由天津大学主办的综合性学术刊物,主要刊登自然科学和工程技术领域中具有创造性和前瞻性的学术论文。论文的涵盖领域包括机械工程、精密仪器与光电子工程、电气自动化与能源工程、电子信息工程、化学工程、建筑工程、材料科学与工程等。稿件来源以本校为主,并涵盖国内其他重点高校。


转载请注明来自:http://www.yueqikan.com/huagonglw/53991.html