您现在的位置是:首页矿业论文

天马山黄金矿业公司废水治理改造工程设计浅析-矿业论文发表

发布时间:2011-07-18 09:49:40更新时间:2011-07-18 09:50:49 1

天马山黄金矿业公司废水治理改造工程设计浅析
陈庆虎 曹蔚
摘要 通过对天马山黄金矿业有限公司由于雨污合流而造成环境污染的现状分析,在力求技术可靠、经济合理设计原则下,对公司区域的雨污分流系统进行设计,并对原废水处理站进行改造设计,有效解决了长期困扰公司发展的环保难题。
关键词 三级沉淀池 高位水池 雨污分流 拦水坝
1 工程概况
天马山黄金矿业有限公司是铜陵有色金属集团股份有限公司控股子公司,主要从事硫金矿的采选及转炉渣的加工,主要产品有金精砂、硫精砂、铜精砂和铁精砂,采选能力1500t/d,其中金硫矿石1200t/d,单硫矿石300t/d。
随着公司不断发展,环保问题日渐显现,尤其是公司区域内的排水问题矛盾突出。选矿车间雨水排水沟(黑沙河支渠)建设在厂区唯一水泥运输道路之下,近年来,由于大吨位精砂运输车辆的长期辗压,雨水排水沟塌陷,造成了雨污混流的局面,采矿车间区域雨污和清污分流也未能理顺,因此废水处理站在下大雨时存在超负荷运行情况;同时由于废水处理站Φ30m的幅流式沉淀池处理能力表现不足,溢流水有时不能达到《污水综合排放标准》的规定。因此实现雨污分流,提高废水处理站处理能力,使环保工艺规范合理,才能从根本上解决天马山黄金矿业有限公司的环境污染问题。
2 工艺与给排水现状
2.1 工艺系统
硫金矿选矿采用碎矿、磨矿、浮选工艺,生产金精砂和硫精砂。其中:碎矿采用三段一闭路流程;磨矿采用螺旋分级机加旋流器控制分级形成一段闭路流程;浮选采用二粗二精一扫流程。产出的金精砂进Φ18m的浓缩机,浓缩机溢流水返回选矿山顶高位水池,浓缩机底流进压滤机过滤;硫金矿碎矿、磨矿、浮选场地冲洗水和跑冒滴漏矿沙因量小全部进入事故池,再用砂泵扬送至中沙池集中收集后送回再选。
选金尾矿再采用磁选工艺回收磁黄铁矿,磁选尾矿采用浮选工艺回收黄铁矿,即硫精砂。产出的硫精砂进入Φ24m的浓缩机,浓缩机溢流水返回选矿山顶高位水池,浓缩机底流进陶瓷过滤机过滤,磁选磁黄铁矿和浮选黄铁矿场地冲洗水和跑冒滴漏矿沙,以及陶瓷过滤机清洗时的硫精砂因量稍大而全部进入现三级沉淀池,现三级沉淀池的沉砂用吸沙泵返回Φ24m的浓缩机。现三级沉淀池最后一级形成了清水池,清水池的清水返回选矿山顶高位水池,且清水池设有溢流口通过管道与废水处理站相连,正常情况下,清水池没有排水。
铜冶炼渣选矿采用碎矿、磨矿、浮选工艺,生产铜精砂。其中:碎矿采用二段开路流程;磨矿采用螺旋分级机加旋流器控制分级形成一段闭路磨矿;浮选采用一粗二精二扫流程。产出的铜精砂进Φ9m高效浓缩机,浓缩机溢流水返回选矿山顶高位水池,浓缩机底流进陶瓷过滤机过滤,铜冶炼渣碎矿、磨矿、浮选场地冲洗水和跑冒滴漏矿沙也因量小全部进入铜冶炼渣中沙池,集中收集后送回浮选工段。
硫金矿选矿事故池和中沙池、铜冶炼渣中沙池等所有生产排水汇集至现三级沉淀池,最后由清水池返回选矿山顶高位水池。由于选矿回水为碱性,且含重金属离子微量,为确保选矿回水的水质达标,在现三级沉淀池第一级中加入硫酸亚铁,用中和沉淀法和铁氧体法联合作用,沉淀回水中所含的微量砷及重金属离子。
2.2 给水系统
生产用水主要为回用水,生产用水量约7860m3/d,其中选矿生产用水量7360m3/d,采矿生产用水量500m3/d。给水系统组成为:采矿井下用水由井下主排水管在适当的位置开路接入;选矿生产用水由高位水池供给。
2.3 排水系统
井下排水混合地表雨水及选矿生产排水进入废水处理站,正常生产时井下排水量3500m3/d,选矿排水量1442m3/d,经废水处理站处理后的水由泵扬至山顶高位水池,回用水量为3940m3/d,底流损失水量为1002m3/d;而由选矿系统浓缩机溢流水、三级沉淀清水池由泵直接扬至山顶高位水池回收利用水量为3420 m3/d,正常生产时废水处理站废水排放量为零。而在下大雨时,采选区域地表径流都经沟渠进入废水处理站,废水处理站存在超负荷运行情况,溢流水有时不能达到《污水综合排放标准》的规定。
3 设计方案
3.1 设计原则
一是尽量利用现有设施,完善废水治理方案;二是将地表径流受污染区域的雨水集中收集,会同选矿生产废水和采矿井下排水,集中输送至现有的废水处理站,经处理达标的废水作为选矿生产用水,以达到下雨时前15~30分钟雨水的收集和雨污分流的目的;三是通过技术经济论证,优化设计方案和设备改型,力求技术可靠、经济合理。
3.2 选矿区以南上游区域雨水排放设计
选矿区以南上游区域汇水面积较大,该区域现有雨水汇集后流至选矿厂东侧铁道边的排水沟,然后沿铁道边的排水沟流至选矿厂三级沉淀池,再由水沟及连接管道流至废水处理站。由于该区域的雨水比较洁净,未受污染,可以不经处理就排入黑砂河支渠,设计考虑在铁道南端,连通铁道边的排水沟,并在排水沟设一拦水坝,使该区域的雨水通过连接拦水坝的管径为DN400的焊接钢管直接进入黑砂河支渠。
3.3 选矿区雨污分流设计
目前,选矿区雨污未分流。合流后的雨污水,一部分通过排水沟进入黑砂河支渠;另外一部分雨污水,通过排水沟以及管道进入废水处理站进行处理,由于雨污合流,不仅导致处理费用增加而且造成环境污染。
设计方案为,在选矿区域设一个雨水排水口(不含生产厂房及所属设施部分),主要收集选矿区南部不受污染的洁净雨水,为避免洁净雨水进入生产废水,设计考虑在铁道南端,先在上游连通铁道边的排水沟,再在排水沟设一拦水坝(雨水排水口下,中沙池排水口上),由DN400的管道连通拦水坝内洁净雨水至黑砂河支渠。同时拦水坝设闸门连通下游中沙池排水口,小雨时雨水作为生产补充水。
选矿区域生产排水主要为生产厂房及所属设施部分的地表雨水、硫精砂清水池清水及选矿区域路面清洗水等,设计将大部分生产排水通过管径为DN400的焊接钢管接至三级沉淀池,处理后直接回用,一小部分生产排水直接通过污水沟流至废水处理站进行处理,确保正常情况选矿没有外排水。
3.4 采矿区雨污分流设计
采矿区现有井下涌水通过水泵扬至地表后,一部分通过排水沟流至厂区大门附近的地下集水池后,由管径为De325的尼龙管接入废水处理站反应池进行处理。另外一部分直接通过一根管径为D325×8的焊接钢管接至废水处理站反应池进行处理。由于排水沟为明沟,雨水和污水未能彻底分离,导致洁净雨水也通过废水处理站反应池进行处理,造成不必要的资源浪费。
设计方案为,井下涌水由泵扬至地表后,直接由一根管径为D325×8的焊接钢管接至废水处理站反应池进行处理,达标后,通过回水泵房扬至选矿300吨高位水池作为生产用水。下雨时采矿区域内的所有雨水由明沟汇集至B号办公楼南侧新建的地下积雨水池,再由一根管径为De325的尼龙管送入废水处理站反应池进行处理,达标后,作为选矿生产水进行回用。若遇大暴雨的时候,由于雨水量过大,可能会造成废水处理站来不及处理,那么15~30分钟后的洁净雨水,可以打开雨水沟上新建的闸门,让其直接排放到黑砂河支渠,达到采矿区雨污分流的目的。
3.5 废水处理站改造设计
3.5.1幅流式沉淀池改造设计
现有废水处理站建成于1992年5月,污水处理能力24000m3/d(即1000m3/h)。废水处理站的主要设备设施有:石灰乳稀释和集液池、石灰溶液输送泵、絮凝剂和石灰搅拌槽、鼓风机、废水反应池、废水输送泵、φ30m幅流式沉淀池(浓缩池)、地下泵房、平流沉淀池、清水池和清水输送泵等,占地面积6200m2。
废水处理工艺简述如下:废水净化站反应池中污水采用石灰乳一段中和法处理。井下废水和选矿排水经排水沟混合后,用管道自流进入废水处理站反应池进行石灰乳中和反应,使重金属离子生成碱性化合物沉淀。井下涌水中微细粒黄色粘土类悬浮物和重金属离子碱性化合物颗粒,在压缩空气充分搅拌并投加PAM絮凝剂进行助凝后,还可产生共沉淀效应,即达到快速沉淀的目的。沉淀物在Φ30m幅流式沉淀池里进行固液分离,底流(中和渣)由砂泵输送至冲填站用于井下充填,处理后的达标水全部返回供选矿生产使用。
现有废水处理站处理能力虽然达到了24000m3/d,但在处理前期15~30分钟雨水时,Φ30m幅流式沉淀池(浓缩池)处理能力就稍嫌不足,因此也就制约了废水处理站处理能力,所以Φ30m幅流式沉淀池(浓缩池)需要进行改造,设计方案为:
一是更换新型布料筒,使入料方式变为深层入料模式,增设系列深层侧向排流体排出孔。通过改进,形成较稳定上部沉降层,从而使细小颗粒沉降更彻底,消除跑浑现象;降低废水在池内液面下的排出点,避免涡流作用所吸附空气的干涉作用,缩短了絮状颗粒沉降时间,相应增长了其在池内的运行路径,提高了沉降效果;流体由垂直流改为水平流,减少了深层流体的扰动,保护了锥坑内和池底沉积物料不受干涉,提高了沉淀层的排放效果。
二是在浓缩池溢流堰增设漂浮物挡板圈和溢流堰找平档板,通过改进防止漂浮物在溢流堰淤塞,保持溢流堰均匀排水,提高浓缩池整体沉降效率,减少溢流中局部不均匀排水时跑浑,从而改善沉降效果。
3.5.2总排放口改造设计
现有排放口为一根DN150管道,由于近年来铜陵地区“一日最大降水量”的剧增,现已不能满足排放口运行的要求。设计方案将总排放口改为两根管径为DN350的焊接钢管作为排放管道,并在管道上设置两个规格为DN350的阀门以达到控制排放的要求。
4 结语
天马山黄金矿业公司废水治理改造工程实施以后,公司区域内雨污混流排水现象得到了有效根治,废水处理站Φ30m的幅流式沉淀池处理能力有了很大提升,从而解决了以往废水处理站在下大雨时超负荷运行的情况,废水处理站处理后的水质标准均能达到《污水综合排放标准》的规定,为天马山黄金矿业有限公司公司可持续发展创造了条件。

参考文献
1 GB50014-2006 室外排水设计规范
2 GB8978-1996 污水综合排放标准
3 GB3838-2002 地表水环境质量标准

 


转载请注明来自:http://www.yueqikan.com/kuangyelw/14058.html